Resolution Enhancement by Prediction of the High-Frequency Image Based on the Laplacian Pyramid

نویسندگان

  • Bo-Won Jeon
  • Rae-Hong Park
  • Seungjoon Yang
چکیده

According to recent advances in digital image processing techniques, interest in high-quality images has been increased. This paper presents a resolution enhancement (RE) algorithm based on the pyramid structure, in which Laplacian histogrammatching is utilized for high-frequency image prediction. The conventional RE algorithms yield blurring near-edge boundaries, degrading image details. In order to overcome this drawback, we estimate an HF image that is needed for RE by utilizing the characteristics of the Laplacian images, in which the normalized histogram of the Laplacian image is fitted to the Laplacian probability density function (pdf), and the parameter of the Laplacian pdf is estimated based on the Laplacian image pyramid. Also, we employ a control function to remove overshoot artifacts in reconstructed images. Experiments with several test images show the effectiveness of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

Detailed Description of the Laplacian Pyramid method

This project asks you to study the supplied code for enhancing high resolution medical and scientific images and develop from it a Map-Reduce distributed task that performs the same enhancement – but has the capability to process, in a timely way, images many times the size. The image processing technique uses a Laplacian Pyramid to find and enhance edges in frequency space, and tunes the greys...

متن کامل

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006